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Abstract

In this paper rank estimates, called WLS rank estimates and computed

using iteratively reweighted least squares, are studied. They do not re-

quire the estimation of auxilliary scale or slope parameters nor do they

require numerical search techniques to minimize a convex surface. The

price is a small asymptotic efficiency loss. In the location model, begin-

ning with a resistant starting value such as the median, the WLS rank esti-

mates have good robustness and computational properties. The WLS rank

estimate is also extended to the regression model and an example is given.
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1. Introduction and Summary

To date there have been two major methods used to construct rank

estimates in the linear model. The first is the direct minimization of

the appropriate dispersion surface proposed by Jaeckel (1972). The mini-

mization is equivalent to solving a set of non-linear equations and can be

thought of as an extension of the method of Hodges and Lehmann (1963) for

defining R-estimates of location. These estimates then have the same asymp-

totic efficiency properties as the rank estimates in the location case.

In the location model, R-estimates generally satisfy various criteria for

robustness such as bounded influence curves and positive breakdown values.

See Hettmansperger and Utts (1977) and Huber (1981) for details of robust

estimation.

The second method of construction consists in developing linearized

versions of the original estimates of Jaeckel. This method uses the asymp-

totic linearity of rank test statistics developed by Jureckova (1971).

Jureckova (1971) and Jaeckel (1972) used the linearity to derive the asymp-

totic distribution theory of the original rank estimates but did not use the

linearity for the actual construction of estimates.

Kraft and van Eeden (1970), (1972a), (1972b), were the first to develop

linearized rank estimates. Their estimates involve a starting value along

with a scale estimate. In general these estimates are not quite as effi-

cient as the nonlinear rank estimates. McKean and Hettmansperger (1978)

develop linearized rank estimates for use in the linear model which have

the same asymptotic efficiency as the nonlinear versions. These linearized -. .

estimates require the estimation of the slope of the linear approxiuwwf ? \ .

'.P '. e"
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Due to the time required to locate the minimum of the dispersion surface

:1 and determine the nonlinear rank estimate, it appears that some alternative

is necessary. The practical value of the linearized rank estimates is

pointed out in the references of Kraft and van Eeden (1972b) and McKean and

Hettmansperger (1978). The question of how soon the asymptotic linearity

provides an adequate approximation still remains. Further, the effect on

efficiency in small samples of estimating scale or slope is not fully under-

stood.

The M-estimate approach described by Huber (1981) provides another method

of robust estimation. As in the rank estimation problem M-estimation re-

quires the solution of nonlinear equations. Linearized versions of M-

estimates have been studied by Bickel (1975). Andrews (1974) discussed

some of the computational aspects of various approaches including weighted

least squares. Interestingly he pointed out that iterating to convergence

may be less desirable than simply using a fixed number of iterations from

a good starting value. Finally Holland and Welsch (1977) have reported

in detail on the iteratively reweighted least squares approach. They point

out that the linearized version is theoretically more desirable than the

weighted least squares; however, it is more difficult to implement because

of the need to estimate the slope. M-estimation requires the estimation

of a scale to make the resulting location and regression parameter estimates

scale invariant. In the Holland-Welsch study scale was estimated just

once with no further iterations because there is no convergence theory when

scale is iterated along with the location estimates. Their Monte Carlo

results indicate that for small samples estimation of scale has a strong



effect on the efficiency. As they point out, "In general, the effect of

estimating the scale has been swept under the rug in previous studies of

robust estimation and perhaps these results will bring attention to the fact

that it should be more carefully considered." The situation seems to

suggest that if a reasonably good estimate of scale can be incorporated into

a weighted least squares M-estimate approach the result would be a compu-

tationally tractable estimator with fairly high efficiency.

In this study we study weighted least squares rank estimates, defined

in Section 2. Unlike M-estimates, these estimates do not require the esti-

mation of auxilliary scale functionals. They do not require the estimation

of scale or of slope as in the case of linearized R-estimates nor do they

require numerical search techniques to minimize a convex surface. In the

location model, beginning with a resistant starting value such as the

median, they have good efficiency and robustness properties; see Sections

3 and 4. In Section 5 we extend the procedure to the regression model and

discuss an example.



2. The Asymptotic Distribution of WLS-Rank Estimates

For a given random sample X1, X2, ... , X from a continuous symmetric

distribution G(x - 8), where 8 is unknown, an R-estimate of 8 is a value

which minimizes
n

S(O) - E a(Ri+(0)) x - 61 (1)
i-i

where 0 < a(1) < ... < a(n) are constants, usually called scores and Ri+(e)

is the rank of IxI - 81 among IX1 - 6j, ..., IXn - 61. Below we will show

that the R-estimate can be considered as a weighted least squares

estimate with weights proportional to the ranks of the absolute deviations.

First, we define, equivalently, an R-estimate ; of 8 as the solution

of the following equation
n

h(8) = Z a(Ri+(8)) sign(Xi - 8) - 0 (2)
i-l

Note that h(8) is a nonincreasing step function of 8; see Bauer (1972). The

R-estimate obtained is the Hodges-Lehmann (1963) estimate since h(O) is a

signed rank test statistic for testing Ho: e - 0 vs. HI: 8 > 0. Except

for special cases like a(i) - 1 with 8 - med Xi or a(i) - i with 8-

med (Xi + X)/2 solving the nonlinear equation (2) for 8 is usually quite

difficult. For example, for the van der Waerden or normal scores, there

is no simple form for the R-estimate.

Hettmansperger and Utts (1977) in writing (2) as

wi(6)(Xi - 8) - 0 (3)

with wi(e) - a(Ri+(6))/Ixi - el if Xi  0 0
0/ otherwise

were able to use an iteration procedure to obtain an R-estimate 61

ii
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Ewi(e)Xi h() (4

where 80 is an initial estimate of 8. Applying the same formula, the

k-step estimate ek can be obtained

ek ' 8 k-1 + h(ek-l) (5)Zwi(Ok I)

We shall call them weighted least squares rank estimates or in short, WLS-

rank estimates. To insure convergence, Utts (1978) proposed an algorithm

which combined iteration with an interval halving procedure. She then proved

the convergence of the k-step WLS-rank estimate to the nonlinear rank esti-

mate.

In this paper, we discuss the efficiency and robustness properties of

the WLS-rank estimates. Although similar to the Kraft and van Eeden estimate,

in general the one-step WLS-rank estimates are not quite as efficient as

the nonlinear rank estimates; the efficiency for the k-step estimate con-

verges rapidly to that of the nonlinear estimate as k increases. Most of

the WLS-rank estimates considered have bounded influence. Hence the weighted

least squares rank estimation procedure provides a computationally feasible

way to find robust R-estimates.

The proof of the asymptotic normality of the WLS-rank estimates will

closely follow that of Kraft and van Eeden (1970).

Suppose we observe a sequence X., ... , Xn of independent random variables

such that Pr(Xi < x) - G(x - 6), i - 1, ... , n. Here the cumulative distri-

bution function G is unknown but is assumed to be a member of the class 2

of distributions with absolutely continuous, symmetric densities with positive

and finite Fisher information.
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Let F e Q and define

Of(u) = f (F- (u)) 0 < u< 1.

Assume that of satisfies Of - 01 + 02 where 01 is nondecreasing and 02 is
1 2 1 2

nonincreasing, f 012du < and f 022du < -, and
0 0

Of(l - u) -Of(u) (6)

Define 0f+(u) f f[(u + 1)/2] and consider a rank statistic hf(6) of the

form +

hf(O) = ( sign (Xi - 6) (7)

Let 0 be a consistent estimate of 0, then the one-step WLS-rank estimate0

is defined by

hf (eo)
el = + E (8)

O + ) lxi - 61 > 0
where i @  ~ I(9)

0 otherwise

Following Kraft and van Eeden (1970, 1972a) we will suppose for convenience,

that the initial estimate e0 is asymptotically equivalent to a solution of

another equation

hS(e) - 0 (10)

where S e 0 is a fixed distribution function. Denote the Fisher information

by I(f) " ff 2(u)du, we then have

n-/2hf (0) D N(0, I(f)) (11)

provided I(F) < -; see Hajek and Sidak (1967, p. 167).
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Van Eeden (1972) obtained the asymptotic linearity for the signed rank

statistic analogous to that of Jureckova's (1969) result. Using a special

case of this result, Kraft and van Eeden (1970, 1972a) derived a linearized

rank estimate for the center of symmetry in the one-sample location problem.

We shall state a special case of Theorem 3.3 in the paper by van Eeden (1972)

as a lemma.

Lemma. Suppose G E n and 0f satisfies the conditions above then

lim P (sup n -1/2 n 1 h(6) - h(6) +
1- 1< cn f

n(e - e0 )I(f(g) I > C) = 0

for e > 0, c > 0 a constant, and I(f,g) - f4 f(u)og (u)du.

From this lemma we conclude that if nl/2@ is bounded in probability then

^ ^ (n 1/ 2 )
hf(8 ) = hf(e) - n(8 - O)I(f,g) + 0 (12)P

Notice that if we replace hf(6) = 0 by the linear approximation then we get

= 6 + nI(f,g) Hence a one-step linearized rank estimate can be written as

h f (68o )

a + hfe (13)0l 'on g)

where I(f,g) is an estimate of I(f,g).

McKean and Hettmansperger (1978) estimated I(f,g) directly and showed

that there was no asymptotic efficiency loss relative to the nonlinear rank

estimate for their estimates.

We now establish the asymptotic normality of the one-step WLS-rank

estimate in the following theorem.
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Theorem 1. If G c , Of and 0s satisfy the conditions above, 8

satisfies (10) and n - 8) is bounded in probability, then

n (8 8) - N(0, V1 (s,f,g)), (14)

where

Vl(S'f'g) = I(s,g) (1 - j(f,g)2 + 21(s,f) (I - j(f,g)) +

I~f) (15)12 (f ,g) (s

and
Of(S(x))

J(f ,g) x g(x)dx

provided J(f,g) exists.

Proof. Without loss of generality, we assume that 8 = 0, then using the

lemma, = ( hf0)

0 + Ewi(E)

n -1(hf(0) + o (nl1/2)
(1 o I(fg) - + p

0 -1 -1(O
n-iw i(eo )  n- iwi(eo)

+ G+(Y ~ I + P +using R (8 ) = - ej), and since G (x) - G+(x), P 0,
i 0 n'nIi o n o

n -lzi w(0o P OftG + ( Ix l) )  g(x)dx = J(f,g). Apply the asymptotic

linearity to hs(e) to get

hs(0) -1/2
6o nI(s ,g) p

Hence

1/2^ 1 (g I(f,g) -1/2 1 -1/2
1 I(s (g) J(f,g J(f,g)------ n+

op (1) (16)
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Following the asymptotic theory of rank tests (Hajek and Sidak, 1967, p. 166),

we finally have

n1/2e N(O, V (s,f,g)).

Similarly we can prove the following.

Theorem 2. Suppose G e 0, 0f and Os satisfy the above conditions,

O satisfies (10) such that n (8 - e) is bounded in probability and

hf (Ok- 1 )
k = k-I + ,wi(ek -1

)  k = 1, 2, ... (17)

Then

nl( k  0) - N(O, Vk(s,fg)) (18)

where

I(S) I-,fg)2k
Vk(S'f'g) = (S_-) ( - (f,g)2 g(s,f) J(fkg)

+ 21(s,f) ( - (f,)k [i -l - I(f,g) )]
I(s'g)I(f'g) J(f,g) J(fg)

+ I(f) [1- (i - (19)+iz (f, g) J(f, g)"

We see that in (19) if [1 - I(f,g)/J(f,g)] k 0 as k - - then

asyvar n e/2k  I (f)/I 2 (f,g) as k - 0, (20)

i.e., the fully iterated WLS-rank estimate has the same asymptotic variance

as the nonlinear rank estimate. The effect on the variance due to the weighted

least squares method represented by J(f,g), and the effect of the initial

estimate, represented by I(s,g) and I(s,f), vanish as k approaches infinity.

Further, if we are lucky enough to choose F to match G, the underlying
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distribution, then I(f~g) - I(f), and

asyvar nl/2k i VIM(f.

That is, the WLS-rank estimate is approximately asymptotically efficient

for large k.

To show that [1 - I(f,g)/J(f,g)] k 0 is equivalent to proving that

0 < I(f,g) < 2J(f,g) . (21)

Theorem 3. Let G e 62 and assume that ofis increasing on (0,co), then

(21) holds if either

(1) Of (G(t))/t is nonincreasing on (0,co)

or (2) f (G(t)) is concave on (0,-).

Proof. First note that I(f,g) = 2f Of(t)og(t)dt - 2f 0' (G(t))g 2(t)dt

000

and J(f,g) =2! (Of(G(t))/t)g(t)dt. Since Of(t) = c f(l - t), 0 < t < I
0

and g(-t) =g(t), -- < t < ~,condition (1) implies that on (0,03)

d f G~ ) O ' (G( L.)) (t) L. - Of <~) 0.

Hence
Co2 Of(G(t))

0 0

00 f(G(t))
< 2! g (t)dt.

Denote Of(G(t)) by k(t), condition (2) implies that on (0,-)

k'(t) < k(t) -k(0) .k(t)
t-0 t
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Substitute for k(t) and simplify to obtain the result.

Corollary. Suppose F is the logistic distribution so f is the Wilcoxon
f

score function and suppose G is symmetric and concave on (0,o). Then (21)

holds.

The WLS-rank estimate depends on the initial estimate e0. In applica-

tions we would use either the sample median or the sample mean as the initial

estimate. In Section 3 we discuss the stability of WLS-rank estimates using

these two initial estimates.



3. Asymptotic Efficiency

We compute the asymptotic efficiency of the WLS-rank estimates relative

to the maximum likelihood estimate so we can find the efficiency loss due

to the weighted least squares rank estimation procedure. The values can

be compared to one, the optimal value. We calculate the asymptotic effi-

ciency for several different combinations of the initial estimate, the score

generating function and the underlying distribution. In all cases the one-

step WLS-rank estimate seems quite efficient in comparison with the fully

iterated ones. The effect of the initial estimate wears off quickly as k

increases.

- Table 1 about here -

We also calculate the asymptotic efficiencies for the WLS-rank estimator

when the underlying distribution is a contaminated normal G(x) =

(1 - £)D(x) + O'(x/a), and use the Wilcoxon scores. The table suggests

that the one-step estimate is quite efficient; the efficiency converges

rapidly and the effect of the initial estimate wears off quickly.

- Tables 2 and 3 about here -

L -4 -II 1 i - - . .ll ' ' _a '-
"



4. Robustness Properties

For robustness properties we show here the stylized sensitivity curves

(Andrews, et al. 1972, Section 5E) of the WLS-rank estimates.

The sample size n is taken to be 20 and the sensitivity curve is

stylized by taking a pseudo sample consisting of 19 expected normal order

statistics. An additional point x is then added as the 20th observation.

The value of the estimator evaluated for the 20 points is denoted T(x).

The sensitivity curve is defined by nT(x) and represents the change in T

caused by adding an additional point x. Note that for the 19 centered,

expected order statistics the value of T is zero. For T - X we have

nT(x) = x, linear and unbounded, while for T = X, the median, the sensiti-

vity curve is bounded and flat outside a neighborhood of zero. Sensitivity

curves provide a finite sample analog of the influence curve discussed by

Hampel (1974). Unbounded sensitivity indicates that the estimator can be

unduly influenced by a small part of the data.

Figures 1-4 show the stylized sensitivity curves for the one and

five step WLS-rank estimate with Wilcoxon scores and initial estimates

x and x, the sample mean and median, respectively.

If we begin with the median then the WLS-rank estimate has bounded

sensitivity at the first step. If we begin with the mean, with unbounded

sensitivity, the WLS-rank estimate is less stable at the first step but

the sensitivity becomes bounded as we take a few iterations. This nicely

illustrates how the effect of the initial estimate wears off rapidly with

a few iterations.

-Figures 1 - 4 about here-
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It would seem preferable to use the median as a starting value; however,

in more complex designs we may only have least squares starts available.

Generally, two or three iterations should be sufficient with a resistant

start and five or so should be sufficient with a least squares start to

stabilize the WLS-rank estimate.

In Section 5F of the Princeton Robustness Study, stylized breakdown

bounds are defined for estimators. For a random sample of size n, j

sample points are taken to be 100,200, ... , J(100). The remaining a - j

points are taken to be the n - j expected normal order statistics from a

sample of size n - J. The estimator is said to break down if the resulting

estimate is greater than three. Denote by m the largest j for which the

estimate is less than three; m/n x 100% is then recorded. The numbers in

Tables 4 and 5 are those for the WLS-rank estimates. Five iterations are

used. Also included are the breakdown bounds for the mean, median, and

the Hodges-Lehmann estimate so the values can readily be compared with

each other.

- Tables 4 and 5 about here -

From these tables we can see that most WLS-rank estimates have larger

breakdown bounds than the sample mean when the mean is used as the initial

estimate. Using the median as the initial estimate the breakdown bounds

are smaller than that of the median, but they are pretty close if we only

take one or two iterations. This again shows the robustness of the WLS-

rank estimates.
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5. Extension to Regression with an Example

Adichie (1967) was the first to derive estimates of the regression

coefficients in the simple linear regression model using the Hodges-Lehmann

(1963) estimation procedure. The methods used by Jureckova (1971) and Jaeckel

(1972) for multiple regression can be considered a generalization of the

methods of Hodges and Lehmann (1963) and Adichie (1967). We shall use

Jaeckel's measure of dispersion of the residuals to derive the WLS-rank

estimates of the regression parameters.

Kraft and van Eeden (1972b) proposed both linearized rank and signed

rank estimates for the linear model and showed that under regularity

conditions, the estimates are asymptotically normal. We will apply some

of their results in the discussion below.

Let Y be an n x 1 vector of observations such that

Y a 08 + Xac + e (22)

where X - [1, XI] is a known n x (p + 1) matrix of full column rank, ao
is the intercept parameter and $c is a p x 1 vector of regression parameters.

Assume that the components of e are iid and each has a distribution G e 1.

Let R(Yi - Xi'Ic) denote the rank of Yi - X.'I c amongY -1  XI "1i c1 c

Yn - X n' c. Jaeckel's (1972) estimate of 6c is a value Bc which minimizes

the convex function

D(c) = Za(R(Yi - Xi'B))(Yi - Xi') (23)

where a(i) - *(i/n + 1) may be generated by centered versions of the score

functions introduced in Section 2, namely O(u) - 0f(u) - -f where if

ff (u)du. Because fo(u)du - Ea(i) - 0 we need to estimate $O separately.

This can be done as in the one-sample location problem using the residuals.
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Differentiating (23) with respect to $J, we obtain

EXija(R(Yi - Xi'8c)) - 0 j - 1, 2, ... , p. (24)

Using the same technique as for the one-sample problem, equation (24)

can be written in matrix form

X1 d(8oa)Xiac - Xld(ao,oc)(Y - 8ol) (25)
1 0 0

where d(8o,8 ) - dag(Wl(o,c), 2(o,$c), ... , Wn (8oc )) and

Wi(o,B) =_ _a(R(Yi - -i'c)... .. Yi Xo - c 0
Yi 08 - Xi'$C 1 - Xi'

(26)
0 Otherwise.

From (25) we can define the one-step WLS-rank estimate of 8c as follows.() c(0)

Let a (0) and a be initial estimates of 8 and 8c, respectively, then

(1) = () + [X1 d(' (0) o (0))X] 1 X1 xld(^ (0) (0)

a(R(Y 1 - X a (27)01 X1 8

Denote (8 ) ) (a(R(Y1 -X '8c)), ..., a(R(Yn - X '8c)))', then

(1) - c(0) + [X 'd(' (O),8c( 0))Xll-X '*(8 ()) (28)

c ~ c 1 o c 1 1 c

which is similar to Bickel's (1975) one-step Huber M-estimate of type I

and Beaton and Tukey's (1974) weighted least squares M-estimate. We shall

call it the one-step WLS-rank estimate of type I. o (1) is obtained using

the one-sample procedure. We would generally use least squares estimates

to start the iteration. Our estimate is more complicated than the ones

proposed by McKean and Hettmansperger (1978) and Kraft and van Eeden (1972b).
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Nevertheless, we do not need to estimate a scale parameter as they do.

To develop the asymptotic distribution, we rewrite the model using the

centered design matrix,

Y l 08 + X.,c + e - 8* + Xlc$ c + e

where X1c -X -X

7 Following the approach of Bickel (1975), define the one-step WLS-rank

estimate of type II, 8c* (1) as

c* ( 1 ) =c ( 0 ) + I(,g (X cXlc)-l Xlc,(g * ( 0 ) )  (29)

where J(f,g) is a consistent estimate of J(f g). The asymptotic normality

of c *(1) under regularity conditions then can be established following

the proof of Kraft and van Eeden (1972b) (see Cheng (1979)). We state the

result in the following theorem.

Theorem 4. Under the regularity conditions of Kraft and van Eeden

(1972b), ni/2(8 c * ( 1 ) 8c ) has, asymptotically, a multivariate normal

distribution with mean vector 0 and covariance matrix given by

I(S) l(f,g)2 + 21(s,f) l(f,g)+
(s'g)2 - j(f,g) I(s,g)I(f,g) ( - f +

J(f,g)Z ic

where Z 1C is positive definite and n-lXlc Xlc lc

The asymptotic distribution of the WLS-rank estimate of type I is the

same as that for type II. The proof requires further regularity conditions

on the weights and follows along the lines of Bickel (1975); see Cheng

(1979) for details. Hence the asymptotic covariance matrix contains the
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factor (15) in the one-step case. It can be shown in the same way that

factor (19) appears for the k-step case.

As an example we consider the stack loss data analyzed by Daniel and

Wood (1971) in their Chapter 5. The example contains 21 observations and

3 parameters. Daniel and Wood studied the problem extensively using least

squares and found 4 outliers. They fitted the model after removing thejoutliers. Using a robust regression procedure, Andrews (1974) obtained

a suitable fit without deleting the outliers as did Hettmansperger and

McKean (1977) using rank estimates.

An APL program was written to calculate the WLS-rank estimates. The

initial estimates were least squares estimates, and negative weights were

set zero. In order to check the convergence of the iteration procedure,

thirty iterations were used. In the following table we show the k-step

WLS-rank estimates using sign and Wilcoxon scores. R-estimates obtained

by Hettmansperger and McKean (1977) were also included. The estimates were

quite close. This should be the case since the same dispersion function

was used, only the techniques used to obtain the estimates were different.

Hence the weighted least squares approach achieves an acceptable solu-

tion without searching a convex surface which may be costly or requiring

the estimation of an auxilliary scale parameter.

- Table 6 about herE -

- -I- i-- . ...... .-M. ... .. . . .. . . . . :, ,,., ., - ... . . . . . - --. .. . .:.. . . •. . . m. - '; ' mB -' "
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Table 1. Asymptotic efficiencies of k-step WLS-rank estimates.

k

1 2 3 4 5 10 30

Sign scores, 8 0 X

Normal .937 .847 .776 .728 .697 .644 .637

Logistic .945 .957 .955 .943 .928 .844 .755

D.E. .592 .677 .753 .815 .865 .976 1.0

Wilcoxon scores, 80 = x
Normal .971 .959 .956 .955 .955 .955 .955

Logistic .995 1.0 1.0 1.0 1.0 1.0 1.0

D.E. .689 .735 .747 .75 .75 .751 .751

van der Waerden scores, e

Normal 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Logistic .956 .955 .955 .955 .955 .955 .955

D.E. .628 .636 .637 .637 .6537 .637 .637

Wilcoxon scores, 60 M X

Normal .919 .950 954 .955 .955 .955 .955

Logistic .984 .999 1.0 1.0 1.0 1.0 1.0

D.E. .853 .70 .759 .753 .752 .751 .751

van der Waer den scores, 0 =X

Normal 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Logistic .947 .955 ;.955 .955 .955 .955 .955

D.E. .667 .639 .637 .637 .637 .637 .637



Table 2. Asymptotic efficiencies of k-step WLS-rank estimates for contaiminated

normal distributions with Wilcoxon Scores.

k

1 2 3 4 5 10 30

O X
e

a 2 .989 .993 ,993 .993 .993 .993 .993

= .2 3 .892 .923 .927 .927 .927 .927 .927

4 .791 .848 .856 .857 .857 .857 .857

a 2 .987 .987 .986 .986 .986 .986 .986

ff= .1 3 .941 .956 .958 .958 .958 .958 .958

4 .881 .916 .920 .920- .920 .920 .920

a = 2 .983 .979 ,.979 .979 .979 .979 .979

ef- .05 3 .964 .969 .970 .970 .970 .970 .970

4 .931 .947 .949 .949 .949 .949 .949

zu
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Table 3. Asymptotic efficiencies of k-step WLS-rank estimates for contaminated

normal distributions with Wilcoxon Scores.

k
1 2 3 4 5 10 30

e =X0

o f 2 .984 .993 .993 .993 .993 .993 .993

= .2 3 .928 .928 .927 .927 .927 .927 .927

4 .864 .858 .857 .857 .857 .857 .857

ff 2 .973 .985 .986 .986 .986 .986 .986

E .1 3 .950 .958 .958 .958 .958 .958 .958

4 .915 .920 .920 .920 .920 .920 .920

Sff 2 .963 .977 .979 .979 .979 .979 .979

= .05 3 .956 .969 .970 .970 .970 .970 .970

4 .938 .948 .949 .949 .949 .949 .949
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Table 4. The breakdown bounds for k-step WLS-rank estimates (initial

estimate: X, scores: Wilcoxon).

Sample Size

5 10 20 40

,
k-0 0 0 0 2.5
(mean)

1 0 10 5 7.5

2 0 10 10 10

Number of 3 20 10 15 15
Iterations

4 20 20 15 17.5

5 20 20 20 17.5

20 20 25 27.5
(Hodges-Lehmann

estimate)

Entries in these rows are from the Princeton Robustness Study
(Andrews, et al., 1972, Section 5F).

.4 "



Table 5. The breakdown bounds for k-step WLS-rank estimates (initial

estimate: X, scores: Wilcoxon).

Sample Size

5 10 20 40

k=O 40 40 45 47.5
(median)

1 40 40 45 42.5

2 40 40 40 37.5

3 20 30 35 37.5

4 20 30 35 37.5

5 20 30 30 32.5
*

O 20 20 25 27.5
(Hodges-Lehmann

estimate)

Entries in these rows are from the Princeton Robustness Study
(Andrews, et al., 1972, Section 5F).



Table 6. Estimates of regression coefficients.

Method I 82 83
Least squares -39.9 .72 1.30 -.15

Least squares w/o outliers -37.6 .80 .58 -.07

Andrews -37.2 .82 .52 -.07

Hettmansperger and McKean: Sign -39.7 .83 .58 -.06

Wilcoxon -39.95 .80 .90 -.11

WLS-rank, Sign, k - 1 -40.01 .805 .903 -.114

2 -40.02 .839 .718 -.096

3 -40.01 .837 .649 -.078

4 -40.01 .837 .603 -.067

5 -40.00 .831 .588 -.060

10 -40.00 .833 .567 -.057

30 -40.00 .833 .568 -.057

Wilcoxon, k f 1 -40.29 .804 1.006 -.138

2 -40.36 .804 .955 -.126

3 -40.50 .809 .913 -.118

4 -40.50 .804 .907 -.113

5 -40.50 .799 .930 -.115

10 -40.50 .810 .904 -.116

30 -40.50 .813 .893 -.116

-II

-~. ,-



nT W)

3.6

1.8

0.0

-3.6. x
-3.6 -1.8 0.0 1.8 3.6

Figure 1. Stylized sensitivity curve for 1-step WLS-rank estimate

(initial estimate: xscores: Wilcoxon).
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(initial estimate: i, scores: Wilcoxon).
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